High-throughput phenotyping platform for nodal root angle in sorghum

Vijaya Singh, Erik van Oosterom, David Jordan, Emma Mace, Dinesh Joshi, Graeme Hammer

Aims

- Understand growth and development of sorghum root systems
- Identify key root traits determining genetic variation in root systems architecture at seedling stage
- Influence of differences in root system at seedling stage on spatial root distribution and water capture of mature plant
- Identify genomic regions associated with nodal root angle
- Develoment of high-throughput phenotyping platform to identify QTL/genes influencing nodal root angle

Growth and development of sorghum root systems at seedling stage

- Soil filled chambers (Rhizotron)
- 40 cm wide, 60 cm deep and 5 cm thick
- 4 genotypes, 3 replications
- 5 harvests (leaf 2-6 leaf stage)
- Roots washed on pinboard

Growth and development of root systems at seedling stage

Singh et al. 2010, plant and soil 333: 287-299

- Sorghum produces only one seminal root
- Nodal root starts to appear at 5-6 leaf stage
- Genotypic difference in nodal root angle
- Critical stage for nodal root angle screening leaf 5-6
- Phenotyping requires chambers of 50cm x 45cm

Influence of differences in root at seedling stage on spatial root distribution of mature plant

- Rhizotron 120cm wide x120 cm deep x10cm (leaf 6 to 16)
- Rhizotron 120cm wide x240cm deep x10cm (flag leaf-midgrain filling)
- Contrasting lines differing in nodal root angle but had similar phenology and tillering
- Roots washed on pinboard
- Contrasting lines differed in root distribution pattern

Dueensland the Government

Influence of differences of root at seedling stage on spatial root distribution of mature plant (leaf 6-16)

Working together with the Queensland Government

Influence of differences in root at seedling stage on spatial root distribution of mature plant (flag leaf-mid grain)

Working together with the Queensiand Government

Influence of differences in root at seedling stage on water capture of mature plant

Rhizotron 120x240x10cm

- 4 Inbred lines with contrasting root angles
- Planted at 60 cm from one side
- GWC measured at anthesis from 20x20cm grids

Influence of differences in root at seedling stage on water capture of mature plant

 Singh et al. 2012. Europ. J. Agronomy. 42:3-10

- Narrow angle line; more roots below the plant and less roots away from the plant
- Narrow angle line; extracted more water below the plant line
- Narrow angle line; extracted less water away from the plant line

Influence of differences in root at seedling stage on water capture of mature plant

Genetic variation for nodal root angle

Singh et al. 2011. Crop Science. 51:2011-2020

- 74 hybrids and inbred lines screened
- Plants harvested at 6 leaf stage
- High genetic variation in nodal root angle (15-50 $^\circ$)
- High heritability
- Ample scope for variety improvement through breeding

Genomic regions associated with nodal root angle

Mace et al . 2012. Theor Appl Gen, 124:97-109 SBI-01 SBI-02 SBI-05 **SBI-08 SBI-10** nodal root angle - green ۲ root dry weight - brown • shoot dry weight - dark blue • total leaf area - light blue • D223296/SC170-6-6 map 0923296/SC 173-6-8 map Conversion · Four QTL governing nodal root angle were identified in a biparental mapping population • Explained 58.2% of phenotypic variation

Dueensland

Government

Working together with the

Oucensland Government

- Root angle QTLs co-located with previously identified QTLs for stay green
- Strong association between nodal root angle QTLs and grain yield data from field trials
- Increase in yield in the presence of narrow root angle QTLs

• Total 213 RIL

Nested Association Mapping (NAM) resource for dissecting the RSA in sorghum

Jordan et al, 2011, Crop science 51:1444-1457

• Excellent resource for elucidating the genetic control of complex traits viz., RSA

 High genetic variation in nodal root angle has been observed for NAM parents

• A multi allelic resource for identifying the genomic regions governing nodal root angle

Singh et al, 2011, Crop Science 51:2011-2020

High-throughput phenotyping platform

Chamber

Steel tub

- The chambers are kept in 2m long steel tub ۰
- Each tub has slot at top and bottom to hold the chambers ۲
- Each tub can hold 50 chambers .
- Polycarbonate covers to avoid light
- 10 tubs in total •
- Screen 500 plants per run

Polycarbonate covers

Tub with chambers and barcodes

Plants at 5 leaf stage

High-throughput imaging box

Four lights with filters

Imaging box for easy imaging of roots

Two cameras operated by tablets through inbuilt Wi-Fi

Imaging box with cameras and lights

THE UNIVERSITY

OF QUEENSLAND

USTRALIA

Queensland Alliance

for Agriculture & Food Inni

•

MR. Righty

Barcoding maintains the identity of genotype

Root angle average of four observations

Working together with the Queensland Government

Conclusions

- The phenotyping platform provides high throughput, low cost easy to screen for phenotypic variation in nodal root angle in sorghum
- Phenotypic platform is highly effective to screen large NAM populations for nodal root angle
- Presence of genotypic variation in nodal root angle with high heritability and under strong genetic control
- Rapid phenotyping opens opportunity for detection of nodal root angle QTL/genes for molecular breeding
- Contrasting lines differ in spatial root development patterns and hence in spatial water extraction patterns of mature plants
- Narrow root angle is associated with drought adaptation

Acknowledgements

UQ Kurt Deifel

Biosystems Engineering

Richard Sulman

DAF

Greg McLean

Ian Broad

Colleen Hunt

Kirsten Sakrewski

Grains Research & Development Corporation

Your GRDC working with you

Australian Government

Australian Research Council

